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Fig. 3 The energy spectrumE(k) versus the wave number
k for SHNSE simulations using the same hyperviscosity
coefficient µ for several different flows. The straight line
represents a slope of −5/3.
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Fig. 2 The energy spectrum E(k) versus the wave num-
ber k for SHNSE simulations using different values of the
hyperviscosity coefficient µ. The straight line represents
a slope of −5/3; ν = 1.73× 10−5.
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Fig. 1 The energy spectrum E(k) versus the wave num-
ber k for SHNSE simulations of three different flows.
The straight line represents a slope of −5/3. Here, Re=
5973270 and kd = 28155.

6. Computational experiments
(Xiao/Avrin/Deng)

Figures 1, 2 and 3 at right (extracted from a
forthcoming paper) represent a summary of runs
whose purpose is to find the optimal choices of
the cutoff wavenumber m = M and the spec-
tral hyperviscosity coefficient µ, respectively, in
simulations with high Reynolds numbers. In
Fig. 1 the best results (dashed-dot line) in terms
of agreement with the Kolmogorov power law
hold for M = 0.8 × (N/2) where N/2 is the
truncation order. In Fig. 2 the best results hold
for µ at or on the order of 2× 107, and as Fig. 3
illustrates, this value of µ seems especially op-
timal for larger values of 1/ν. Together Figs. 2
and 3 illustrate in the special case of total energy
T = 0.5 the general observation (seen over the
full course of the runs) that the optimal choice of
µ is at or near 2×

√
2T × 107 for high Reynolds

numbers, particularly for Re>105, and that oth-
erwise this relation is independent of the choice
of viscosity.

5. Convergence to an inviscid limit

•We let ν → 0 in (1) (with g = 0) while keep-
ing the term µAϕ fixed. The case ν = 0 is
similar to previous applications of SVV to the
Euler equation. That µ can be chosen inde-
pendently of ν is supported by our numerical
experiments.

•Let wν = u − uν where (for some N > m)
uν solves (1) and u solves (1) with ν = 0, re-
spectively. If λα−5/4

n+1 ≥ c2 ‖u0‖2 µ
−1, the con-

vergence of ‖Qnwν(t)‖2
2 depends linearly on

‖Qnwν(0)‖2
2, ν ‖uν,0‖

2
2,

and
[
‖u0‖2

2 + ‖uν,0‖2
2

]
sup

0≤s≤t
‖Pnwν(s)‖2

Hβ/2. The

convergence of sup
0≤s≤t

‖Pnwν(s)‖2
2 is by Gron-

wall estimates but with coefficients whose de-
pendence on n is like n5/6.

4. Galerkin convergence
(Avrin/Xiao, JDE, 2009)

•Let wN = u − uN where (for some N > m)
uN is the Galerkin approximation to u. Let G
be the Grashoff number; let n ≥ m, then if
λ
α−5/4
n+1 > c1(ν/µ)G we show for any interval

[0, t] that the convergence of sup
0≤s≤t

‖QnwN(s)‖2
Hβ/2

depends linearly on ‖QnwN(0)‖2
Hβ/2,

‖Qn(g − gN)‖2
2, ‖A−(α−β)/2QN(u · ∇)u2

2‖2,

and (ν/µ)2G2 sup
0≤s≤t

‖PnwN(s)‖2
Hβ/2.

•The convergence of sup
0≤s≤t

∥∥∥Aβ/2PnwN(s)
∥∥∥2

2
to

zero follows from a more standard Gronwall
estimate, but with coefficients depending on
only a fractional power of n.

3. Inertial manifold results (Avrin,
JDDE, 2008)

•When Aϕ = QmA
α an inertial manifold exists

for large enough m whenever α ≥ 3/2.

•This result is obtained using a natural spectral
gap property of the model. Note that regular
hyperviscosity (m = 0) needs α ≥ 5/2.

•The results hold also (for larger still m) in the
smoothed-out version of Aϕ.

2. Attractor results (Avrin, JDDE,
2008)

•We have dimHA ≤ dimF A ≤ K(ν/µ)cmaκbd
where κd is the Kolmogorov wavenumber.

•K(α) depends also on the shape (but not the
size) of Ω ; (ν/µ)c is of maneageable size, a is
a small fractional power, and b < 3.

•As long as m ≤ κ3
d then dimHA ≤ dimF A ≤

Kmaκbd ≤ Kκ3
d for m ≤ κ3

d; thus the degrees
of freedom on A are within Landau-Lifschitz
estimates even for huge m. For the more real-
istic choices m ≤ κd we have that b is signif-
icantly lower, implying potential for degrees-
of-freedom reduction in simulation.

1. The equations

The 3D spectrally-hyperviscous Navier-Stokes
equations (SHNSE) are:

ut + νAu + µAϕu + (u · ∇)u +∇p = g, (1)

∇ · u = 0. (2)

•We assume (for now) that the domain Ω is a
periodic box. ThenA has eigenspacesE1, E2, · · · .

•Let Pm project onto E1⊕ · · ·⊕Em, and Qm =

I − Pm; then Aϕ = QmA
α or a smoothed-out

version of this.

•Here α > 1 and typically α = 2; basically this
is the hyperviscous version of Tadmor’s spec-
tral vanishing viscosity (SVV) method, and is
in a sense an alternative version of spectral
eddy viscosity.
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