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1. The equations

The 3D spectrally-hyperviscous Navier-Stokes
equations (SHNSE) are:

u + vAu+ pAu+ (u-Viu+Vp=g, (1)
V-u=0. 2)

e We assume (for now) that the domain €2 is a

periodic box. Then A has eigenspaces F, Eo, - - -

eLet P, projectonto E1&®--- P E,,, and (), =
[ — P,;then A, = ),,,A” or a smoothed-out
version of this.

e Here o > 1 and typically a = 2; basically this
1s the hyperviscous version of Tadmor’s spec-
tral vanishing viscosity (SVV) method, and 1s
In a sense an alternative version of spectral
eddy viscosity.

2. Attractor results (Avrin, JDDE,
2008)

e We have dimpy A < dimp A < K(v/p)m®x)
where k4 1s the Kolmogorov wavenumber.

e K (o) depends also on the shape (but not the
size) of () ; (v/u)¢ is of maneageable size, a is
a small fractional power, and b < 3.

e As long as m < /{3 then dimy A < dimp A <
Km°kl < Kx3 for m < k3; thus the degrees
of freedom on A are within Landau-Lifschitz
estimates even for huge m. For the more real-
istic choices m < k, we have that b 1s signif-
icantly lower, implying potential for degrees-
of-freedom reduction 1n simulation.

3. Inertial manifold results (Avrin,
JDDE, 2008)

e When A, = (),,A” an inertial manifold exists
for large enough m whenever a > 3/2.

e This result 1s obtained using a natural spectral
gap property of the model. Note that regular
hyperviscosity (m = 0) needs a > 5/2.

e The results hold also (for larger still m) in the
smoothed-out version of A,.
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4. Galerkin convergence
(Avrin/Xiao, JDE, 2009)

elet wy = u — uy where (for some N > m)
uy 18 the Galerkin approximation to u. Let GG
be the Grashoff number; let n > m, then 1t
AT s c1(v/u)G we show for any interval

0, t| that the convergence of Sup | Qrwn(s) Hi]g P
<s<{

depends linearly on ||Q,wy (0|75,
1Qulg — gl [A~D2QN(u - V)u3
and (v/p)*G? sup || Pywn ()]0

0<s<t
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e The convergence of sup HAﬂ/ QinN(S)Hj to
0<s<t

zero follows from a more standard Gronwall
estimate, but with coetficients depending on
only a fractional power of n.

S. Convergence to an inviscid limit

eWe let v — 0 1n (1) (with g = 0) while keep-
ing the term pA, fixed. The case v = 0 is
similar to previous applications of SVV to the
Euler equation. That p can be chosen inde-
pendently of v 1s supported by our numerical
experiments.

elet w, = u— u, where (for some N > m)
u,, solves (1) and u solves (1) with v = 0, re-
spectively. If A°7 7" > ¢y |Jug||, ', the con-

vergence of ||Q,w,(t)|; depends linearly on
2
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and [[|ugll2 4+l 2] sup [P (5)][%5e: The
T 0<s<¢t

2
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convergence of sup ||P,w,(s)||; is by Gron-
0<s<t
wall estimates but with coefficients whose de-

pendence on n is like n°/°.

6. Computational experiments
(X1a0/Avrin/Deng)

Figures 1, 2 and 3 at right (extracted from a
forthcoming paper) represent a summary of runs
whose purpose 1s to find the optimal choices of
the cutoff wavenumber m = M and the spec-
tral hyperviscosity coefficient u, respectively, 1n
stimulations with high Reynolds numbers. In
Fig. 1 the best results (dashed-dot line) 1in terms
of agreement with the Kolmogorov power law

hold for M = 0.8 x (N/2) where N/2 is the
truncation order. In Fig. 2 the best results hold
for 1 at or on the order of 2 x 10, and as Fig. 3
illustrates, this value of ;1 seems especially op-
timal for larger values of 1/v. Together Figs. 2
and 3 1llustrate in the special case of total energy

1" = 0.5 the general observation (seen over the
tull course of the runs) that the optimal choice of

11 is at or near 2 x /271 x 10" for high Reynolds

numbers, particularly for Re>10°, and that oth-
erwise this relation 1s independent of the choice
of viscosity.
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Fig. 1 The energy spectrum E'(k) versus the wave num-
ber £ for SHNSE simulations of three different flows.
The straight line represents a slope of —5/3. Here, Re=
5973270 and k; = 28155.
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Fig. 2 The energy spectrum E'(k) versus the wave num-
ber £ for SHNSE simulations using different values of the
hyperviscosity coefficient 1. The straight line represents
a slope of —5/3; v = 1.73 x 107°.
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Fig. 3 The energy spectrum E/(k) versus the wave number
k for SHNSE simulations using the same hyperviscosity
coeftficient 4 for several different flows. The straight line
represents a slope of —5/3.
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